
The Error of Multivariate Linear Extrapolation
with Applications to Derivative-Free Optimization

Liyuan Cao, Zaiwen Wen

Peking University

2nd Derivative-Free Optimization Symposium
June 28, 2024

Liyuan Cao Linear Extrapolation Error Analysis & its Applications in DFO DFOS 2024 1 / 28



Linear Extrapolation Error Analysis and its Application in DFO

1 Problem Definition and Existing Results

2 Error Estimation Problem

3 An Improved Upper Bound

4 Worst Quadratic Function

5 Application 1: Preventing Wasteful Evaluation in TR Methods

6 Application 2: Tracking the Poisedness in TR Methods

7 Application 3: Proving the Convergence Rate of Simplex Methods

Liyuan Cao Linear Extrapolation Error Analysis & its Applications in DFO DFOS 2024 2 / 28



Motivation
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(b) simplex method
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Problem Definition

objective function f : Rn → R
interpolation set {x1,x2, . . . ,xn+1} ⊂ Rn affinely independent

linear interpolation model f̂(x) = c+ g · x such that
1 xT

1

1 xT
2

...
1 xT

n+1


[
c
g

]
=


f(x1)
f(x2)

...
f(xn+1)

 .

Question: Assume f ∈ C1,1
ν (Rn), i.e.,

∥Df(u)−Df(v)∥ ≤ ν∥u− v∥ for all u,v ∈ Rn.

Given {xi}n+1
i=1 and x, what is the (sharp) upper bound on the function

approximation error |f̂(x)− f(x)|, particularly when x ̸∈ conv
(
{xi}n+1

i=1

)
?
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Existing Results

1 seminal work on interpolation error: Philippe G Ciarlet and Pierre-Arnaud Raviart.

“General Lagrange and Hermite interpolation in Rn with applications to finite element methods”. In:

Archive for Rational Mechanics and Analysis 46.3 (1972), pp. 177–199

Theorem (error of general Lagrange interpolation)

Let f̂ be a polynomial of degree d that interpolates a d+ 1 times continuous
differentiable f on a poised set.

Dmf̂(x)−Dmf(x) =
1

(d+ 1)!

(n+d
d )∑

i=1

{
Dd+1f(ξi) · (xi − x)d+1

}
Dmℓi(x),

where ξi = αixi + (1− αi)x for some αi.

2 sharp bound on LI error: Shayne Waldron. “The error in linear interpolation at the

vertices of a simplex”. In: SIAM Journal on Numerical Analysis 35.3 (1998), pp. 1191–1200

Theorem (sharp bound on linear interpolation)

Let c be the center and R the radius of the unique sphere containing Θ = {xi}n+1
i=1 .

Then, for each x ∈ conv(Θ), there is the sharp inequality

|f̂(x)− f(x)| ≤ 1

2

(
R2 − ∥x− c∥2

)
∥|D2f |∥L∞(conv(Θ)).
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Preliminaries: Lagrange Polynomials

Definition (Lagrange Polynomial)

Given an affinely independent set {xi}n+1
i=1 ⊂ Rn, a set of n+ 1 linear functions

{ℓj}n+1
j=1 is called a basis of Lagrange polynomials if

ℓj(xi) =

{
1 if i = j,
0 if i ̸= j.

Additionally, we define
x0 = x and ℓ0 : Rn → −1.

They have the following properties:

n+1∑
i=1

ℓi(x)f(xi) = f̂(x),

n+1∑
i=0

ℓi(x) = 0,

and

n+1∑
i=0

ℓi(x)xi = 0.

Define

I+ = {i ∈ {0, . . . , n+ 1} : ℓi(x) > 0}
I− = {i ∈ {0, . . . , n+ 1} : ℓi(x) < 0}.
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Error Estimation Problem

Because the sharp upper bound on error = the largest possible error, the
question can be formulated as

max
f
|f̂(x)− f(x)| s.t. f ∈ C1,1

ν (Rn).

This infinite dimensional problem has a finite dimensional equivalent

max
gi,yi

n+1∑
i=0

ℓi(x)yi

s.t. yj ≤ yi +
1

2
(gi + gj) · (xj − xi) +

ν

4
∥xj − xi∥2

− 1

4ν
∥gj − gi∥2 ∀i, j = 0, 1, . . . , n+ 1.
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Error Estimation Problem
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Figure: The sharp error bound on |f̂(x) − f(x)| for each x on the 100 × 100 grid covering
[−2.5, 2.5] × [−1.5, 2.5], where Θ = {(−0.3, 1), (−1.1,−0.5), (1, 0)} and ν = 1.
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An Improved Upper Bound

Theorem (An Improved Upper Bound)

Assume f ∈ C1,1
ν (Rn). Let linear f̂ interpolate f at {xi}n+1

i=1 ⊂ Rn. Then

f̂(x)− f(x) ≤ ν

2

n+1∑
i=0

|ℓi(x)|∥xi − u∥2 for any u ∈ Rn.

Proof.

The bound is the weighted sum of the following inequalities

ℓi(x) f(xi)− f(u)−Df(u) · (xi − u) ≤ ν

2
∥xi − u∥2 for all i ∈ I+,

−ℓj(x) −f(xj) + f(u) +Df(u) · (xj − u) ≤ ν

2
∥xj − u∥2 for all j ∈ I−.

In existing results from the literature, the function f needs to be twice
continuously differentiable and u = x.
The point u can be set to the center of a trust region.
Minimize the R.H.S. w.r.t. u to yield

u⋆ = w
def
=

∑n+1
i=0 |ℓi(x)|xi∑n+1
i=0 |ℓi(x)|
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An Improved Upper Bound: Sharpness

Theorem

The bound f̂(x)− f(x) ≤ ν
2

∑n+1
i=0 |ℓi(x)|∥xi −w∥2 is sharp under either of the two

following conditions

1 x ∈ conv(Θ);

2 there is only one positive term in {ℓi(x)}n+1
i=1 .

Proof.

This error can be achieved by the function

1 f(x) = ν
2
∥x∥2 for the first case;

2 f(x) = − ν
2
∥x∥2 for the second case.

y1

y2

y3

(a) x ∈ conv(Θ)

y1

y2

y3

(b) one positive ℓ
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Worst Quadratic Function

Let f be a quadratic function of the form

f(u) = c+ g · u+Hu · u/2 with c ∈ R,g ∈ Rn, and symmetric H ∈ Rn×n.

The error estimation problem can be formulated as

max
H

f̂(x)− f(x) = G ·H/2
s.t. −νI ⪯ H ⪯ νI,

where

G =

n+1∑
i=0

ℓi(x)xix
T
i .

Analytical solution:

G ·H⋆/2 =
ν

2

n∑
i=1

|λi(G)|, where λi’s are the eigenvalues of G.
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Worst Quadratic Function
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Figure: The sharp error bound on |f̂(x) − f(x)| for each x on the 100 × 100 grid covering
[−2.5, 2.5] × [−1.5, 2.5], where Θ = {(−0.3, 1), (−1.1,−0.5), (1, 0)} and ν = 1.
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Worst Quadratic Function: Not Bad Enough

x1

x2

x3

Areas where

max
f
|f̂(x)− f(x)| ≥ max

f
|f̂(x)− f(x)|

s.t. f ∈ C1,1
ν (Rn) s.t. f ∈ C1,1

ν (Rn) and is quadratic..

At least for the bivariate case, the maximum error can be achieved by piecewise
quadratic functions.

There are up to 4 such open sets for bivariate extrapolation, but this number
can be as large as 20 for trivariate extrapolation.

The sufficient condition for ν/2
∑n

i=1 |λi(G)| is an upper bound is complicated.
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Maximizing Error over Quadratic Functions

Theorem (upper bound achieved by quadratic functions)

Assume f ∈ C1,1
ν (Rn). For any x ∈ Rn, if µij ≥ 0 for all (i, j) ∈ I+ × I−, then

|f̂(x)− f(x)| ≤ 1

2
G ·H⋆ =

ν

2

n∑
i=1

|λi(G)|.

Computation of {µij}:
1

Y+ =

—–(xi − x)T—–
...

—–( )T—–


i∈I+

Y− =

—–(xj − x)T—–
...

—–( )T—–


j∈I−

diag(ℓ+) =

[
ℓi(x)

. . .

]
i∈I+

P− =

 · · · pi · · ·


i:λi<0

2 M = diag(ℓ+)Y+P−(Y−P−)
−1 =


...

· · · µij · · ·
...


i∈I+,j∈I−\{0}

∈ R|I+|×(|I−|−1)

3 µi0 = ℓi(x)−
∑

j∈I−\{0} µij for all i ∈ I+.
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Summary of Error Analysis Results

1 An improved upper bound:

f̂(x)− f(x) ≤ ν

2

n+1∑
i=0

|ℓi(x)|∥xi − u∥2 for any u ∈ Rn,

which is sometimes tight after u is optimized.

2 Error obtained by the worst quadratic function:

G ·H⋆/2 =
ν

2

n∑
i=1

|λi(G)|, where G =

n+1∑
i=0

ℓi(x)xix
T
i ,

which is an upper error bound when {µij}i∈I+,j∈I− are all non-negative.

3 Piecewise quadratic functions can achieve the largest error in the remaining
cases of bivariate linear interpolation. (For curiosity, not for any applications.
Details not included in the talk.)
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Application 1: Preventing Wasteful Evaluation in TR Methods

x1

x2

x3

x4

⇒

x1

x2

x3

x4

(a) linear interpolation + trust region method

Idea/Plan:

1 In TR DFO methods, f̂(x4) might be wildly inaccurate.

2 If error(x4)≫ f(x3)− f̂(x4), opt for a model step.

Results:

1 Preliminary results show some success, but occasional (depends on other parts of
the algorithm and hyperparameters) and limited (up to 12% save).

2 Will not necessarily work because: bad approximation ̸= bad step.
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Application 2: Tracking the Poisedness in TR Methods

Algorithm 0: Self-Correcting DFO-TR based on Linear Interpolation

Inputs: initial TR B(c, δ) and sample Θ; Λ > 1, η ∈ (0, 1), and 0 < γ2 < 1 ≤ γ1.
while termination condition not met, do

Linear interpolation: f̂(u) = f(u) for all u ∈ Θ
Trust region method: Let x = c− δ/∥Df̂∥Df̂ be the trial point. Compute

ρ =
f(c)− f(x)
f̂(c)− f̂(x)

and τ =
1

n

∑
u∈Θ

|ℓu(x)|
∥u− c∥2

δ2
.

Then update the trust region as

(c, δ)←


(x, γ1δ) if ρ ≥ η, (descent iteration)

(c, δ) if ρ < η and τ > Λ,

or ∥Df̂∥ is too small, (model improvement iteration)

(x, γ2δ) otherwise. (trust region adjustment iteration)

Sample set management: Let

r = argmax
u∈Θ

|ℓu(x)|∥u− c∥2,

and replace r with x in Θ.
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Application 2: Tracking the Poisedness in TR Methods

τ =
1

n

∑
u∈Θ

|ℓu(x)|
∥u− c∥2

δ2

With our improved bound:

f̂(x)− f(x) ≤ ν

2

(
|ℓ0(x)|∥x− c∥2 +

∑
u∈Θ

|ℓu(x)|∥u− c∥2
)
=
ν

2
(1 + nτ)δ2.

Lemma (small τ and small δ ⇒ descent iteration)

If δ ≤ 2(1−η)
ν(1+nτ)

∥Df̂∥, then ρ ≥ η.

Lemma (model improvement iteration ⇒ ψ decreases)

If the trust region does not change, then ψ(Θ, c, δ)− ψ(Θ+, c, δ) ≥ log τ.

Lemma (small ψ ⇒ small τ)

If ψ(Θ, c, δ) ≤ 1
3
log Λ, then τ ≤ Λ.
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Application 3: Proving the Convergence Rate of Simplex Methods

Algorithm 1: A Baisc Simplex DFO Method

Start with a regular simplex with center c0 and radius δ.
for k = 0, 1, 2, . . . do

1 Sort and label the points in Θk as {xi}n+1
i=1 such that f(x1) ≤ · · · ≤ f(xn+1).

2 Let x = −xn+1 +
2
n

∑n
i=1 xi, and evaluate f(x).

3 Θk+1 ← Θk \ {xn+1} ∪ {x}.

Because

1 The simplex remains regular,

2 The size of the simplex does not change,

we always have

1 µij = 1/n for all i ∈ I+ = {1, 2, . . . , n} and j ∈ I− = {0, n+ 1},

2 G = 2(n+1)

n2


−(n+ 1) 0 · · · 0

0 1
...

. . .

0 1

 ⇒ ν
2

∑n
i=1 |λi(G)| = 2n+2

n
νδ2
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Application 3: Proving the Convergence Rate of Simplex Methods

Lemma (Range of the Reflection Point’s Function Value)

Assume f ∈ C1,1
ν (Rn). In any iteration, the function value at the reflection point x is

always bounded as

−f(xn+1) +
2

n

n∑
i=1

f(xi)−
2n+ 2

n
νδ2 ≤ f(x) ≤ −f(xn+1) +

2

n

n∑
i=1

f(xi) +
2n+ 2

n
νδ2.

Then, let {x(t)
i }

n+1
i=1 and x(t) be the simplex points and the reflection point in

iteration t, respectively. We have,∑
u∈Θk+1

f(u) =
∑

u∈Θk

f(u)− f(x(k)
n+1) + f(x(k))

≤
∑

u∈Θk

f(u)− f(x(k)
n+1) +

[
− f(x(k)

n+1) +
2

n

n∑
i=1

f(x
(k)
i ) +

2n+ 2

n
νδ2

]

=
∑

u∈Θk

f(u)− 2n+ 2

n

[
f(x

(k)
n+1)−

1

n+ 1

n+1∑
i=1

f(x
(k)
i )

]
+

2n+ 2

n
νδ2.
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Application 3: Proving the Convergence Rate of Simplex Methods

After telescoping, we have∑
u∈Θk

f(u) ≤
∑
u∈Θ0

f(u)− 2n+ 2

n

k−1∑
t=0

[
f(x

(t)
n+1)−

1

n+ 1

n+1∑
i=1

f(x
(t)
i )

]
+ k

2n+ 2

n
νδ2.

Use the fact that
∑

u∈Θk
f(u) ≥ (n+ 1)f⋆ and rearrange the terms to get

1

k

k−1∑
t=0

[
f(x

(t)
n+1)−

1

n+ 1

n+1∑
i=1

f(x
(t)
i )

]
≤ n

2k
·
[ 1

n+ 1

∑
u∈Θ0

f(u)− f⋆
]
+ νδ2.

Lemma (Low Function Value Difference ⇒ Small Model Gradient)

Assume f ∈ C1,1
ν (Rn). For any iteration k, let f̂ be the linear function that

interpolates f on Θk, and ck the centroid of Θk. Then

∥Df̂(ck)∥ ≤
n

δ

[
f(xn+1)−

1

n+ 1

n+1∑
i=1

f(xi)
]
.

Lemma (Model Gradient vs True Gradient)

Assume f ∈ C1,1
ν (Rn). For any iteration k, let f̂ be the linear function that

interpolates f on Θk, and ck the centroid of Θk. Then

∥Df(ck)−Df̂(ck)∥2 ≤
n

4
ν2δ2.
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interpolates f on Θk, and ck the centroid of Θk. Then

∥Df(ck)−Df̂(ck)∥2 ≤
n

4
ν2δ2.
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Application 3: Proving the Convergence Rate of Simplex Methods

Theorem (Convergence Rate with an Arbitrary δ)

Assume f ∈ C1,1
ν (Rn) and f(u) ≥ f⋆ for all u ∈ Rn. Let ck be the centroid of Θk for

each iteration k = 0, 1, . . . . We have for any k ≥ 1

1

k

k−1∑
t=0

∥Df(ct)∥ ≤
n2

2δk
·
[ 1

n+ 1

∑
u∈Θ0

f(u)− f⋆
]
+

(
n+

√
n

2

)
νδ.

If the Lipschitz constant ν is known, we can select the size of the simplex and
a stopping criterion to obtain a solution of desired accuracy.

Theorem (Complexity for an ϵ-Stationary Solution)

Assume f ∈ C1,1
ν (Rn) and f(u) ≥ f⋆ for all u ∈ Rn. Given a desired accuracy ϵ > 0,

if δ = 2ϵ
5nν

and the loop breaks after
[
f(xn+1)− 1

n+1

∑n+1
i=1 f(xi)

]
≤ 2νδ2 is detected

before the reflection step in some iteration k, then the algorithm would terminate in
at most

25n3ν

8ϵ2

[ 1

n+ 1

∑
u∈Θ0

f(u)− f⋆
]

iterations with ∥Df(ck)∥ ≤ ϵ.
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Linear Extrapolation Error Analysis and its Application in DFO

1 Problem Definition and Existing Results

2 Error Estimation Problem
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4 Worst Quadratic Function

5 Application 1: Preventing Wasteful Evaluation in TR Methods

6 Application 2: Tracking the Poisedness in TR Methods

7 Application 3: Proving the Convergence Rate of Simplex Methods

Thank you! Grazie!
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