The Error of Multivariate Linear Extrapolation with Applications to Derivative-Free Optimization

Liyuan Cao, Zaiwen Wen

Peking University

2nd Derivative-Free Optimization Symposium June 28, 2024

Liyuan Cao

Linear Extrapolation Error Analysis & its Applications in DFO DFOS 2024 1 / 28

Linear Extrapolation Error Analysis and its Application in DFO

- 1 Problem Definition and Existing Results
- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods

Motivation

(a) linear interpolation + trust region method

(b) simplex method

Linear Extrapolation Error Analysis and its Application in DFO

1 Problem Definition and Existing Results

- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- 4 Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods

objective function interpolation set linear interpolation model

$$f: \mathbb{R}^{n} \to \mathbb{R}$$

$$\{\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n+1}\} \subset \mathbb{R}^{n} \text{ affinely independent}$$

$$\hat{f}(\mathbf{x}) = c + \mathbf{g} \cdot \mathbf{x} \text{ such that}$$

$$\begin{bmatrix} 1 & \mathbf{x}_{1}^{T} \\ 1 & \mathbf{x}_{2}^{T} \\ \vdots \\ 1 & \mathbf{x}_{n+1}^{T} \end{bmatrix} \begin{bmatrix} c \\ \mathbf{g} \end{bmatrix} = \begin{bmatrix} f(\mathbf{x}_{1}) \\ f(\mathbf{x}_{2}) \\ \vdots \\ f(\mathbf{x}_{n+1}) \end{bmatrix}.$$

Question: Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$, i.e.,

$$||Df(\mathbf{u}) - Df(\mathbf{v})|| \le \nu ||\mathbf{u} - \mathbf{v}||$$
 for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Given $\{\mathbf{x}_i\}_{i=1}^{n+1}$ and \mathbf{x} , what is the (sharp) upper bound on the function approximation error $|\hat{f}(\mathbf{x}) - f(\mathbf{x})|$, particularly when $\mathbf{x} \notin \operatorname{conv} (\{\mathbf{x}_i\}_{i=1}^{n+1})$?

Existing Results

1 seminal work on interpolation error: Philippe G Ciarlet and Pierre-Arnaud Raviart.

"General Lagrange and Hermite interpolation in \mathbb{R}^n with applications to finite element methods". In: Archive for Rational Mechanics and Analysis 46.3 (1972), pp. 177–199

Theorem (error of general Lagrange interpolation)

Let \hat{f} be a polynomial of degree d that interpolates a d+1 times continuous differentiable f on a poised set.

(n+d)

$$D^{m}\hat{f}(\mathbf{x}) - D^{m}f(\mathbf{x}) = \frac{1}{(d+1)!} \sum_{i=1}^{\binom{n+d}{d}} \left\{ D^{d+1}f(\xi_{i}) \cdot (\mathbf{x}_{i} - \mathbf{x})^{d+1} \right\} D^{m}\ell_{i}(\mathbf{x}),$$

where $\xi_i = \alpha_i \mathbf{x}_i + (1 - \alpha_i) \mathbf{x}$ for some α_i .

Sharp bound on LI error: Shayne Waldron. "The error in linear interpolation at the vertices of a simplex". In: SIAM Journal on Numerical Analysis 35.3 (1998), pp. 1191–1200

Theorem (sharp bound on linear interpolation)

Let **c** be the center and R the radius of the unique sphere containing $\Theta = {\mathbf{x}_i}_{i=1}^{n+1}$. Then, for each $\mathbf{x} \in conv(\Theta)$, there is the sharp inequality

$$|\hat{f}(\mathbf{x}) - f(\mathbf{x})| \le \frac{1}{2} \left(R^2 - \|\mathbf{x} - \mathbf{c}\|^2 \right) \||D^2 f|\|_{L_{\infty}(\operatorname{conv}(\Theta))}.$$

Definition (Lagrange Polynomial)

Given an affinely independent set $\{\mathbf{x}_i\}_{i=1}^{n+1} \subset \mathbb{R}^n$, a set of n+1 linear functions $\{\ell_j\}_{j=1}^{n+1}$ is called a basis of Lagrange polynomials if

$$\ell_j(\mathbf{x}_i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Additionally, we define

$$\mathbf{x}_0 = \mathbf{x}$$
 and $\ell_0 : \mathbb{R}^n \to -1$.

They have the following properties:

$$\sum_{i=1}^{n+1} \ell_i(\mathbf{x}) f(\mathbf{x}_i) = \hat{f}(\mathbf{x}),$$
$$\sum_{i=0}^{n+1} \ell_i(\mathbf{x}) = 0,$$
and
$$\sum_{i=0}^{n+1} \ell_i(\mathbf{x}) \mathbf{x}_i = \mathbf{0}.$$

Define

$$\mathcal{I}_{+} = \{i \in \{0, \dots, n+1\} : \ell_{i}(\mathbf{x}) > 0\}$$
$$\mathcal{I}_{-} = \{i \in \{0, \dots, n+1\} : \ell_{i}(\mathbf{x}) < 0\}.$$

1 Problem Definition and Existing Results

- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- 4 Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods

Because the sharp upper bound on error = the largest possible error, the question can be formulated as

$$\max_{f} |\hat{f}(\mathbf{x}) - f(\mathbf{x})| \quad \text{s.t. } f \in C^{1,1}_{\nu}(\mathbb{R}^n).$$

Because the sharp upper bound on error = the largest possible error, the question can be formulated as

$$\max_{f} |\hat{f}(\mathbf{x}) - f(\mathbf{x})| \quad \text{s.t. } f \in C^{1,1}_{\nu}(\mathbb{R}^n).$$

This infinite dimensional problem has a finite dimensional equivalent

$$\max_{\mathbf{g}_{i}, y_{i}} \sum_{i=0}^{n+1} \ell_{i}(\mathbf{x}) y_{i}$$
s.t.
$$y_{j} \leq y_{i} + \frac{1}{2} (\mathbf{g}_{i} + \mathbf{g}_{j}) \cdot (\mathbf{x}_{j} - \mathbf{x}_{i}) + \frac{\nu}{4} \|\mathbf{x}_{j} - \mathbf{x}_{i}\|^{2}$$

$$- \frac{1}{4\nu} \|\mathbf{g}_{j} - \mathbf{g}_{i}\|^{2} \ \forall i, j = 0, 1, \dots, n+1.$$

Error Estimation Problem

Figure: The sharp error bound on $|\hat{f}(\mathbf{x}) - f(\mathbf{x})|$ for each \mathbf{x} on the 100 × 100 grid covering $[-2.5, 2.5] \times [-1.5, 2.5]$, where $\Theta = \{(-0.3, 1), (-1.1, -0.5), (1, 0)\}$ and $\nu = 1$.

Liyuan Cao

- 1 Problem Definition and Existing Results
- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- 4 Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods

An Improved Upper Bound

Theorem (An Improved Upper Bound)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$. Let linear \hat{f} interpolate f at $\{\mathbf{x}_i\}_{i=1}^{n+1} \subset \mathbb{R}^n$. Then

$$\hat{f}(\mathbf{x}) - f(\mathbf{x}) \leq \frac{\nu}{2} \sum_{i=0}^{n+1} |\ell_i(\mathbf{x})| \|\mathbf{x}_i - \mathbf{u}\|^2 \text{ for any } \mathbf{u} \in \mathbb{R}^n.$$

Proof.

The bound is the weighted sum of the following inequalities

$$\ell_i(\mathbf{x})$$
 $f(\mathbf{x}_i) - f(\mathbf{u}) - Df(\mathbf{u}) \cdot (\mathbf{x}_i - \mathbf{u}) \le \frac{\nu}{2} \|\mathbf{x}_i - \mathbf{u}\|^2$ for all $i \in \mathcal{I}_+$,

$$\ell_j(\mathbf{x}) \qquad -f(\mathbf{x}_j) + f(\mathbf{u}) + Df(\mathbf{u}) \cdot (\mathbf{x}_j - \mathbf{u}) \leq \frac{\nu}{2} \|\mathbf{x}_j - \mathbf{u}\|^2 \qquad \text{for all } j \in \mathcal{I}_-.$$

- In existing results from the literature, the function f needs to be twice continuously differentiable and $\mathbf{u} = \mathbf{x}$.
- The point **u** can be set to the center of a trust region.
- Minimize the R.H.S. w.r.t. **u** to yield

$$\mathbf{u}^{\star} = \mathbf{w} \stackrel{\text{def}}{=} \frac{\sum_{i=0}^{n+1} |\ell_i(\mathbf{x})| \mathbf{x}_i}{\sum_{i=0}^{n+1} |\ell_i(\mathbf{x})|}$$

An Improved Upper Bound: Sharpness

Theorem

The bound $\hat{f}(\mathbf{x}) - f(\mathbf{x}) \leq \frac{\nu}{2} \sum_{i=0}^{n+1} |\ell_i(\mathbf{x})| \|\mathbf{x}_i - \mathbf{w}\|^2$ is sharp under either of the two following conditions

- $\mathbf{0} \ \mathbf{x} \in conv(\Theta);$
- **2** there is only one positive term in $\{\ell_i(\mathbf{x})\}_{i=1}^{n+1}$.

Proof.

This error can be achieved by the function

- $f(\mathbf{x}) = \frac{\nu}{2} \|\mathbf{x}\|^2$ for the first case;
- $\mathbf{O} f(\mathbf{x}) = -\frac{\nu}{2} \|\mathbf{x}\|^2$ for the second case.

Linear Extrapolation Error Analysis and its Application in DFO

- 1 Problem Definition and Existing Results
- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods

Worst Quadratic Function

Let f be a quadratic function of the form

 $f(\mathbf{u}) = c + \mathbf{g} \cdot \mathbf{u} + H\mathbf{u} \cdot \mathbf{u}/2$ with $c \in \mathbb{R}, \mathbf{g} \in \mathbb{R}^n$, and symmetric $H \in \mathbb{R}^{n \times n}$.

The error estimation problem can be formulated as

$$\max_{H} \quad \hat{f}(\mathbf{x}) - f(\mathbf{x}) = G \cdot H/2$$

s.t.
$$-\nu I \preceq H \preceq \nu I,$$

where

Livuan Cao

$$G = \sum_{i=0}^{n+1} \ell_i(\mathbf{x}) \mathbf{x}_i \mathbf{x}_i^T.$$

Worst Quadratic Function

Let f be a quadratic function of the form

 $f(\mathbf{u}) = c + \mathbf{g} \cdot \mathbf{u} + H\mathbf{u} \cdot \mathbf{u}/2$ with $c \in \mathbb{R}, \mathbf{g} \in \mathbb{R}^n$, and symmetric $H \in \mathbb{R}^{n \times n}$.

The error estimation problem can be formulated as

$$\max_{H} \quad \hat{f}(\mathbf{x}) - f(\mathbf{x}) = G \cdot H/2$$

s.t.
$$-\nu I \preceq H \preceq \nu I,$$

where

$$G = \sum_{i=0}^{n+1} \ell_i(\mathbf{x}) \mathbf{x}_i \mathbf{x}_i^T.$$

Analytical solution:

$$G \cdot H^*/2 = \frac{\nu}{2} \sum_{i=1}^n |\lambda_i(G)|$$
, where λ_i 's are the eigenvalues of G .

Worst Quadratic Function

Figure: The sharp error bound on $|\hat{f}(\mathbf{x}) - f(\mathbf{x})|$ for each \mathbf{x} on the 100 × 100 grid covering $[-2.5, 2.5] \times [-1.5, 2.5]$, where $\Theta = \{(-0.3, 1), (-1.1, -0.5), (1, 0)\}$ and $\nu = 1$.

Liyuan Cao

Worst Quadratic Function: Not Bad Enough

Areas where

$$\begin{split} \max_{f} |\hat{f}(\mathbf{x}) - f(\mathbf{x})| &\geq \max_{f} |\hat{f}(\mathbf{x}) - f(\mathbf{x})| \\ \text{s.t. } f \in C_{\nu}^{1,1}(\mathbb{R}^{n}) &\qquad \text{s.t. } f \in C_{\nu}^{1,1}(\mathbb{R}^{n}) \text{ and is quadratic..} \end{split}$$

- At least for the bivariate case, the maximum error can be achieved by piecewise quadratic functions.
- There are up to 4 such open sets for bivariate extrapolation, but this number can be as large as 20 for trivariate extrapolation.
- The sufficient condition for $\nu/2\sum_{i=1}^{n} |\lambda_i(G)|$ is an upper bound is complicated.

Liyuan Cao

Maximizing Error over Quadratic Functions

Theorem (upper bound achieved by quadratic functions)

Assume
$$f \in C^{1,1}_{\nu}(\mathbb{R}^n)$$
. For any $\mathbf{x} \in \mathbb{R}^n$, if $\mu_{ij} \ge 0$ for all $(i,j) \in \mathcal{I}_+ \times \mathcal{I}_-$, then
 $|\hat{f}(\mathbf{x}) - f(\mathbf{x})| \le \frac{1}{2}G \cdot H^{\star} = \frac{\nu}{2}\sum_{i=1}^n |\lambda_i(G)|.$

Computation of $\{\mu_{ij}\}$:

$$Y_{+} = \begin{bmatrix} -(\mathbf{x}_{i} - \mathbf{x})^{T} \\ \vdots \\ -()^{T} \end{bmatrix}_{i \in \mathcal{I}_{+}} Y_{-} = \begin{bmatrix} -(\mathbf{x}_{j} - \mathbf{x})^{T} \\ \vdots \\ -()^{T} \end{bmatrix}_{j \in \mathcal{I}_{-}} diag(\ell_{+}) = \begin{bmatrix} \ell_{i}(\mathbf{x}) \\ \vdots \\ \end{bmatrix}_{i \in \mathcal{I}_{+}} P_{-} = \begin{bmatrix} \cdots & \mathbf{p}_{i} \\ \mathbf{p}_{i} \end{bmatrix}_{i:\lambda_{i} < 0} \\ \mathbf{0} M = diag(\ell_{+})Y_{+}P_{-}(Y_{-}P_{-})^{-1} = \begin{bmatrix} \vdots \\ \cdots & \mu_{ij} \\ \vdots \end{bmatrix}_{i \in \mathcal{I}_{+}} \cdots \\ \mathbf{0} H_{ij} = \left[\vdots \\ \mathbf{0} H_{ij} \end{bmatrix}_{i \in \mathcal{I}_{+}, j \in \mathcal{I}_{-} \setminus \{0\}} \\ \mathbf{0} \mu_{i0} = \ell_{i}(\mathbf{x}) - \sum_{j \in \mathcal{I}_{-} \setminus \{0\}} \mu_{ij} \text{ for all } i \in \mathcal{I}_{+}. \end{cases}$$

1 An improved upper bound:

$$\hat{f}(\mathbf{x}) - f(\mathbf{x}) \leq rac{
u}{2} \sum_{i=0}^{n+1} |\ell_i(\mathbf{x})| \|\mathbf{x}_i - \mathbf{u}\|^2 ext{ for any } \mathbf{u} \in \mathbb{R}^n,$$

which is sometimes tight after \mathbf{u} is optimized.

2 Error obtained by the worst quadratic function:

$$G \cdot H^*/2 = \frac{\nu}{2} \sum_{i=1}^n |\lambda_i(G)|, \text{ where } G = \sum_{i=0}^{n+1} \ell_i(\mathbf{x}) \mathbf{x}_i \mathbf{x}_i^T,$$

which is an upper error bound when $\{\mu_{ij}\}_{i \in \mathcal{I}_+, j \in \mathcal{I}_-}$ are all non-negative.

Piecewise quadratic functions can achieve the largest error in the remaining cases of bivariate linear interpolation. (For curiosity, not for any applications. Details not included in the talk.)

Linear Extrapolation Error Analysis and its Application in DFO

- 1 Problem Definition and Existing Results
- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods

Application 1: Preventing Wasteful Evaluation in TR Methods

(a) linear interpolation + trust region method

Idea/Plan:

- **0** In TR DFO methods, $\hat{f}(\mathbf{x}_4)$ might be wildly inaccurate.
- **2** If $\operatorname{error}(\mathbf{x}_4) \gg f(\mathbf{x}_3) \hat{f}(\mathbf{x}_4)$, opt for a model step.

Results:

- Preliminary results show some success, but occasional (depends on other parts of the algorithm and hyperparameters) and limited (up to 12% save).
- **2** Will not necessarily work because: bad approximation \neq bad step.

Algorithm 0: Self-Correcting DFO-TR based on Linear Interpolation

Inputs: initial TR $B(\mathbf{c}, \delta)$ and sample Θ ; $\Lambda > 1$, $\eta \in (0, 1)$, and $0 < \gamma_2 < 1 \le \gamma_1$. while termination condition not met, **do**

Linear interpolation: $\hat{f}(\mathbf{u}) = f(\mathbf{u})$ for all $\mathbf{u} \in \Theta$ **Trust region method:** Let $\mathbf{x} = \mathbf{c} - \delta / \|D\hat{f}\| D\hat{f}$ be the trial point. Compute

$$\rho = \frac{f(\mathbf{c}) - f(\mathbf{x})}{\hat{f}(\mathbf{c}) - \hat{f}(\mathbf{x})} \text{ and } \tau = \frac{1}{n} \sum_{\mathbf{u} \in \Theta} |\ell_{\mathbf{u}}(\mathbf{x})| \frac{\|\mathbf{u} - \mathbf{c}\|^2}{\delta^2}.$$

Then update the trust region as

$$(\mathbf{c}, \delta) \leftarrow \begin{cases} (\mathbf{x}, \gamma_1 \delta) & \text{if } \rho \geq \eta, \qquad (\text{descent iteration}) \\ (\mathbf{c}, \delta) & \text{if } \rho < \eta \text{ and } \tau > \Lambda, \\ & \text{or } \|D\hat{f}\| \text{ is too small, } \pmod{\text{improvement iteration}} \\ (\mathbf{x}, \gamma_2 \delta) & \text{otherwise.} \qquad (\text{trust region adjustment iteration}) \end{cases}$$

Sample set management: Let

$$\mathbf{r} = \underset{\mathbf{u}\in\Theta}{\arg\max} |\ell_{\mathbf{u}}(\mathbf{x})| \|\mathbf{u} - \mathbf{c}\|^{2},$$

and replace \mathbf{r} with \mathbf{x} in Θ .

Application 2: Tracking the Poisedness in TR Methods

$$\tau = \frac{1}{n} \sum_{\mathbf{u} \in \Theta} |\ell_{\mathbf{u}}(\mathbf{x})| \frac{\|\mathbf{u} - \mathbf{c}\|^2}{\delta^2}$$

With our improved bound:

$$\hat{f}(\mathbf{x}) - f(\mathbf{x}) \le \frac{\nu}{2} \left(|\ell_0(\mathbf{x})| \|\mathbf{x} - \mathbf{c}\|^2 + \sum_{\mathbf{u} \in \Theta} |\ell_{\mathbf{u}}(\mathbf{x})| \|\mathbf{u} - \mathbf{c}\|^2 \right) = \frac{\nu}{2} (1 + n\tau) \delta^2.$$

Lemma (small τ and small $\delta \Rightarrow$ descent iteration)

If $\delta \leq \frac{2(1-\eta)}{\nu(1+n\tau)} \|D\hat{f}\|$, then $\rho \geq \eta$.

Application 2: Tracking the Poisedness in TR Methods

$$\tau = \frac{1}{n} \sum_{\mathbf{u} \in \Theta} |\ell_{\mathbf{u}}(\mathbf{x})| \frac{\|\mathbf{u} - \mathbf{c}\|^2}{\delta^2}$$

With our improved bound:

$$\hat{f}(\mathbf{x}) - f(\mathbf{x}) \le \frac{\nu}{2} \left(|\ell_0(\mathbf{x})| \|\mathbf{x} - \mathbf{c}\|^2 + \sum_{\mathbf{u} \in \Theta} |\ell_{\mathbf{u}}(\mathbf{x})| \|\mathbf{u} - \mathbf{c}\|^2 \right) = \frac{\nu}{2} (1 + n\tau) \delta^2.$$

Lemma (small τ and small $\delta \Rightarrow$ descent iteration)

If $\delta \leq \frac{2(1-\eta)}{\nu(1+n\tau)} \|D\hat{f}\|$, then $\rho \geq \eta$.

Lemma (model improvement iteration $\Rightarrow \psi$ decreases)

If the trust region does not change, then $\psi(\Theta, \mathbf{c}, \delta) - \psi(\Theta^+, \mathbf{c}, \delta) \ge \log \tau$.

Lemma (small $\psi \Rightarrow$ small τ)

If $\psi(\Theta, \mathbf{c}, \delta) \leq \frac{1}{3} \log \Lambda$, then $\tau \leq \Lambda$.

Algorithm 1: A Baisc Simplex DFO Method

Start with a regular simplex with center \mathbf{c}_0 and radius δ . for $k = 0, 1, 2, \ldots$ do

- Sort and label the points in Θ_k as $\{\mathbf{x}_i\}_{i=1}^{n+1}$ such that $f(\mathbf{x}_1) \leq \cdots \leq f(\mathbf{x}_{n+1})$. Let $\mathbf{x} = -\mathbf{x}_{n+1} + \frac{2}{n} \sum_{i=1}^{n} \mathbf{x}_i$, and evaluate $f(\mathbf{x})$.
- $\Theta_{k+1} \leftarrow \Theta_k \setminus \{\mathbf{x}_{n+1}\} \cup \{\mathbf{x}\}.$

Because

• The simplex remains regular,

2 The size of the simplex does not change,

we always have

$$\begin{array}{l} \bullet \mu_{ij} = 1/n \text{ for all } i \in \mathcal{I}_{+} = \{1, 2, \dots, n\} \text{ and } j \in \mathcal{I}_{-} = \{0, n+1\}, \\ \\ \bullet & G = \frac{2(n+1)}{n^{2}} \begin{bmatrix} -(n+1) & 0 & \cdots & 0\\ 0 & 1 & & \\ \vdots & \ddots & \\ 0 & & & 1 \end{bmatrix} \Rightarrow \quad \frac{\nu}{2} \sum_{i=1}^{n} |\lambda_{i}(G)| = \frac{2n+2}{n} \nu \delta^{2}$$

2 3

1

Lemma (Range of the Reflection Point's Function Value)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$. In any iteration, the function value at the reflection point **x** is always bounded as

$$-f(\mathbf{x}_{n+1}) + \frac{2}{n} \sum_{i=1}^{n} f(\mathbf{x}_i) - \frac{2n+2}{n} \nu \delta^2 \le f(\mathbf{x}) \le -f(\mathbf{x}_{n+1}) + \frac{2}{n} \sum_{i=1}^{n} f(\mathbf{x}_i) + \frac{2n+2}{n} \nu \delta^2.$$

Lemma (Range of the Reflection Point's Function Value)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$. In any iteration, the function value at the reflection point **x** is always bounded as

$$-f(\mathbf{x}_{n+1}) + \frac{2}{n} \sum_{i=1}^{n} f(\mathbf{x}_i) - \frac{2n+2}{n} \nu \delta^2 \le f(\mathbf{x}) \le -f(\mathbf{x}_{n+1}) + \frac{2}{n} \sum_{i=1}^{n} f(\mathbf{x}_i) + \frac{2n+2}{n} \nu \delta^2.$$

Then, let $\{\mathbf{x}_i^{(t)}\}_{i=1}^{n+1}$ and $\mathbf{x}^{(t)}$ be the simplex points and the reflection point in iteration t, respectively. We have,

$$\sum_{\mathbf{u}\in\Theta_{k+1}} f(\mathbf{u}) = \sum_{\mathbf{u}\in\Theta_{k}} f(\mathbf{u}) - f(\mathbf{x}_{n+1}^{(k)}) + f(\mathbf{x}^{(k)})$$

$$\leq \sum_{\mathbf{u}\in\Theta_{k}} f(\mathbf{u}) - f(\mathbf{x}_{n+1}^{(k)}) + \left[-f(\mathbf{x}_{n+1}^{(k)}) + \frac{2}{n} \sum_{i=1}^{n} f(\mathbf{x}_{i}^{(k)}) + \frac{2n+2}{n} \nu \delta^{2} \right]$$

$$= \sum_{\mathbf{u}\in\Theta_{k}} f(\mathbf{u}) - \frac{2n+2}{n} \left[f(\mathbf{x}_{n+1}^{(k)}) - \frac{1}{n+1} \sum_{i=1}^{n+1} f(\mathbf{x}_{i}^{(k)}) \right] + \frac{2n+2}{n} \nu \delta^{2}.$$

Application 3: Proving the Convergence Rate of Simplex Methods

After telescoping, we have

$$\sum_{\mathbf{u}\in\Theta_k} f(\mathbf{u}) \le \sum_{\mathbf{u}\in\Theta_0} f(\mathbf{u}) - \frac{2n+2}{n} \sum_{t=0}^{k-1} \left[f(\mathbf{x}_{n+1}^{(t)}) - \frac{1}{n+1} \sum_{i=1}^{n+1} f(\mathbf{x}_i^{(t)}) \right] + k \frac{2n+2}{n} \nu \delta^2$$

Use the fact that $\sum_{\mathbf{u}\in\Theta_k}f(\mathbf{u})\geq (n+1)f^{\star}$ and rearrange the terms to get

$$\frac{1}{k} \sum_{t=0}^{k-1} \left[f(\mathbf{x}_{n+1}^{(t)}) - \frac{1}{n+1} \sum_{i=1}^{n+1} f(\mathbf{x}_i^{(t)}) \right] \le \frac{n}{2k} \cdot \left[\frac{1}{n+1} \sum_{\mathbf{u} \in \Theta_0} f(\mathbf{u}) - f^{\star} \right] + \nu \delta^2.$$

26 / 28

Application 3: Proving the Convergence Rate of Simplex Methods

After telescoping, we have

$$\sum_{\mathbf{u}\in\Theta_k} f(\mathbf{u}) \le \sum_{\mathbf{u}\in\Theta_0} f(\mathbf{u}) - \frac{2n+2}{n} \sum_{t=0}^{k-1} \left[f(\mathbf{x}_{n+1}^{(t)}) - \frac{1}{n+1} \sum_{i=1}^{n+1} f(\mathbf{x}_i^{(t)}) \right] + k \frac{2n+2}{n} \nu \delta^2.$$

Use the fact that $\sum_{\mathbf{u}\in\Theta_k}f(\mathbf{u})\geq (n+1)f^\star$ and rearrange the terms to get

$$\frac{1}{k} \sum_{t=0}^{k-1} \left[f(\mathbf{x}_{n+1}^{(t)}) - \frac{1}{n+1} \sum_{i=1}^{n+1} f(\mathbf{x}_i^{(t)}) \right] \le \frac{n}{2k} \cdot \left[\frac{1}{n+1} \sum_{\mathbf{u} \in \Theta_0} f(\mathbf{u}) - f^{\star} \right] + \nu \delta^2.$$

Lemma (Low Function Value Difference \Rightarrow Small Model Gradient)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$. For any iteration k, let \hat{f} be the linear function that interpolates f on Θ_k , and \mathbf{c}_k the centroid of Θ_k . Then

$$\|D\hat{f}(\mathbf{c}_k)\| \leq \frac{n}{\delta} \Big[f(\mathbf{x}_{n+1}) - \frac{1}{n+1} \sum_{i=1}^{n+1} f(\mathbf{x}_i) \Big].$$

Lemma (Model Gradient vs True Gradient)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$. For any iteration k, let \hat{f} be the linear function that interpolates f on Θ_k , and \mathbf{c}_k the centroid of Θ_k . Then $\|Df(\mathbf{c}_k) - D\hat{f}(\mathbf{c}_k)\|^2 \leq \frac{n}{4}\nu^2\delta^2$.

Theorem (Convergence Rate with an Arbitrary δ)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$ and $f(\mathbf{u}) \geq f^*$ for all $\mathbf{u} \in \mathbb{R}^n$. Let \mathbf{c}_k be the centroid of Θ_k for each iteration $k = 0, 1, \ldots$. We have for any $k \geq 1$

$$\frac{1}{k}\sum_{t=0}^{k-1}\|Df(\mathbf{c}_t)\| \leq \frac{n^2}{2\delta k} \cdot \left[\frac{1}{n+1}\sum_{\mathbf{u}\in\Theta_0}f(\mathbf{u}) - f^{\star}\right] + \left(n + \frac{\sqrt{n}}{2}\right)\nu\delta.$$

If the Lipschitz constant ν is known, we can select the size of the simplex and a stopping criterion to obtain a solution of desired accuracy.

Theorem (Complexity for an ϵ -Stationary Solution)

Assume $f \in C^{1,1}_{\nu}(\mathbb{R}^n)$ and $f(\mathbf{u}) \geq f^*$ for all $\mathbf{u} \in \mathbb{R}^n$. Given a desired accuracy $\epsilon > 0$, if $\delta = \frac{2\epsilon}{5n\nu}$ and the loop breaks after $[f(\mathbf{x}_{n+1}) - \frac{1}{n+1}\sum_{i=1}^{n+1} f(\mathbf{x}_i)] \leq 2\nu\delta^2$ is detected before the reflection step in some iteration k, then the algorithm would terminate in at most

$$\frac{25n^3\nu}{8\epsilon^2} \left[\frac{1}{n+1} \sum_{\mathbf{u} \in \Theta_0} f(\mathbf{u}) - f^{\star} \right]$$

iterations with $\|Df(\mathbf{c}_k)\| \leq \epsilon$.

Linear Extrapolation Error Analysis and its Application in DFO

- 1 Problem Definition and Existing Results
- 2 Error Estimation Problem
- 3 An Improved Upper Bound
- Worst Quadratic Function
- 6 Application 1: Preventing Wasteful Evaluation in TR Methods
- 6 Application 2: Tracking the Poisedness in TR Methods
- Application 3: Proving the Convergence Rate of Simplex Methods
 - Thank you! Grazie!